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THE ALGEBRAIC CRITERIA FOR THE STABILITY OF CONTROL SYSTEMS 

H. Cremer and F.H. Effertz 

/328* 
The present paper critically examines the standard algebraic 

criteria for the stability of linear control systems and their 
proofs, reveals important, previously unnoticed connections, and 
presents new representations. Algebraic stability criteria have 
also recently acquired significance for stability studies of 
nonlinear differential equation systems by the method of Krylov- 
Bogoljubov-Magnus, and allow realizability conditions to be 
determined for classes of broken rational functions as frequency 
characteristics of electrical networks. 

From the easily obtained connection between the solutions of 
E.J. Routh and J. Schur for the stability problem, a characteriz- 
ation is derived for a class of polynomials with roots lying 
symmetric to the origin, which include the frequency formula of 
L. Cremer as a special case, possess significance for the 
construction of root and phase angle loci of control systems, and 
explain an error of K. Th. Vahlen ( 0  1). 

Then a parametric representation of the coefficients of real 
Hurwitz polynomials is presented which can be interpreted as a 
solution of a nonlinear system of equations. By setting suitable 
parameters equal to zero, this yields coefficient representations 
of the Hurwitz polynomials reduced by the method of J. Schur and 
H. Buckner, as well as a characteristic determinant notation for 
the first polynomials mentioned. These results make it possible 
to give the stability boundary hypersurface and quadratic control 
surface for linear control systems of any order, as a function of 
Routhian sample functions ( 0  2). 

The algebraic criteria for certain root distributions in 
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areas of the complex plane, given by Ch. Hermite, J. Schur, A. 

Cohn and M. Fujiwara, are summarized, a general formation method 
for these conditions is derived, and it is shown that assuming 
real coefficients the Hermitian stability criteria lead to 
Hurwitz determinants that are already separated into main and 
secondary sequences. 
the two sequences of determinants independently. This entails an 
advantage with positive coefficients, for a known result 1329 
shows that assuming positive coefficients, the positive nature of 
the determinant of one of these sequences is already character- 
istic of stability ( 8  3 ) .  

This yields the possibility of calculating 

A previously surprisingly unnoticed possibility is revealed 
for effortlessly deriving criteria for a certain zero distribu- 
tion of polynomials with complex coefficients on the basis of the 
paper of A. Hurwitz published in this periodical. Thus, for 
example, K. Th. Vahlen considers his results to have a special 
advantage over those of A. Hurwitz in that they allow not only a 
stability study, but also a root enumeration, and J. Schur 
emphasizes that his criteria, unlike that of A. Hurwitz, are not 
limited to real coefficients. 
considerable shortening of Hurwitz's proof ( 8  4 ) .  

In this connection one also gets a 

It is demonstrated that these generalized Hurwitz condi- 
tions, which are also valid for complex coefficients, are 
equivalent to the criteria derived by H. Bilharz from results of 
J. Schur. ( 0  5). 

Then the connection between the generalized Hurwitz criter- 
ion and Hermitian conditions is clarified. In two papers, M. 
Fujiwara proved the correspondence between the conditions of 
Hermite and Hurwitz for real coefficients, using the criterion of 
Lihard-Chipart as an intermediate term. This demonstration is 
performed directly here and extended to complex coefficients 
( e  6 ) .  

The connection between the criteria of Ch. Hermite and H. 
Bilharz is then demonstrated directly without interposing the 
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generalized criterion of A. Hurwitz ( 8  7 ) .  

Finally, it is shown that from the vanishing of certain 
Hurwitz determinants one can directly conclude the number of 
zeros of a polynomial lying symmetric to the origin, and a 
coupling law for the vanishing of the Hurwitz determinants of the 
main and secondary sequence is presented ( 5  8). 

It is known that systems of homogeneous linear differential 
equations 

(1) 

where 

mean linear differential operators, can be solved by the formula- 
tion 

/330 

This formulation leads to a system of homogeneous linear equa- 
tions for the amplitudes Ak 

I, 

5' L,,(z)  A,=  0 (j= I , ? ,  . . . ; N ) ,  
t -  1 

which has non-trivial solutions if and only if the determinant 

vanishes. 
system." 

A (z) = 0 is called the ttcharacteristic equation of the 
If z = -6, + iw, is a root, then there exists a 
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solution of the system in the form 

i.e., with real coefficients one gets real solutions in the form 

where Ckr 6,, w , ,  f l V  are real constants. 

We call the system stable if all roots of the characteristic 
equation are in the left half-plane, i.e. if each solution of the 
system tends to 0 as t increases. If the differential equations 
describe a system capable of vibration this means that each free 
vibration of the system dies out. 

Below, ttstablelt is always understood in this stricter sense. 
Solutions that do not tend to 0 as t increases are therefore not 
counted as stable -- in agreement with most authors, but in 
contrast to some who demand only boundedness of the solutions. 

By generalizing the so-called harmonic balance method of N. 
Krylov and N. Bogoljubov [ 2 5 ] ,  applied to a nonlinear differen- 
tial equation system with the form 

K. Magnus [27] arrives at a linear approximation system in form 
(1) with 

where 

The preconditions given by K. Magnus [27] lead to coeffi- 
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cients a j k  and a*jk  that can be represented as integral trans- 
forms of the nonlinear functions fj (xl, x2, ..., Xn). /331 

Thus for example in the common case 

one gets 

with col -1- yy*. 

Here formulation (2) leads to a characteristic equation 
whose coefficients are still functions of a reference amplitude A 

[ 2 7 ,  171. 

An Ilalgebraic stability criterionii is a system of rules that 
makes it possible, from the given real or complex coefficients an 
and using only the four basic modes of computation, to determine 
whether all zeros (or how many zeros) of the polynomial 

lie in the left half-plane. 

Since the real part of l/z has the same sign as the real 
part of z, a stability criterion for the polynomial (4) also 
applies unchanged for the polynomial 
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We will repeatedly employ this fact tacitly in the proofs below. 

The problem of setting up algebraic stability criteria was 
solved in principle by Cauchy as early as 1837 .  He reduced the 
determination of the number of roots within a given area to the 
determination of the llindexll of a rational function. For the 
case where the area is a half-plane, this index can be determined 
especially easily by the IISturm method,I1 published shortly before 
(1829)  . 

This solved the problem in principle. Of course, Cauchy set 
up no explicit criterion. 

Ch. Hermite 1231 in 1856 reduced the question to whether 
certain assigned forms (the famous IIHermitian formst1) are posi- 
tively definite or not. 

Not until twenty years later was E.J. Routh [ 3 2 ,  331 led to 
the question by a technical problem, and in 1877 in the IIAdams 
Price [sic] Essayt1 gave a very elegant and practically handy 
solution for the problem when assuming real coefficients. 
According to Routhls criterion, the coefficients of polynomial 
( 5 )  are arranged in two rows as follows: 

I 3 3 2  

and likewise each additional row is formed by a corresponding 
cross-multiplication of the elements of the two previous rows. 
If all zeros of polynomial ( 4 )  lie in the left half-plane, the 
process can only be continued to the (n + l)th row, which then 
contains only one element. The coefficient functions of the 
first column of this ItRouth scheme" are called IIRouthian sample 
functions.I* If they are all positive for the normalization 
a. > 0 ,  then all zeros of polynomial ( 4 )  have negative real 
parts, and vice versa. 
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Again almost twenty years later, A. Hurwitz [ 2 4 ]  was led to 
the problem by an inquiry from the turbine builder Stodola. 
Hurwitz did not know Routh's work, but knew that of Cauchy, Sturm 
and Hermite. 
on the "Law of inertia of quadratic forms'' in the Proceedings of 
the Royal Prussian Academy. 
paper, and using the theory of quadratic forms and functional 
theoretical means with a relatively elaborate mathematical 
effort, which must be understood historically, he arrived at his 
criterion: 

Shortly before, Frobenius had published his paper 

Hurwitz based his proof on this 

!I,= 

U' u: 11' . . .":(s-, 

u, u: u ,  . . . ":$-, 
0 u,  u: . . . U : $ - :  

. . . 

. . .  

. . .  
U , - ~ l l - , U . - # + . - . U ~  

and ak = 0, if k > n or k c 0. 
nth degree, whose general element is given by 

Thus Hn is a determinant of the 

(','.= nz,-,, (,cy 1 ' =  I ,  2. . . . )  ? I )  

The determinants ( 6 )  are the principal minors of Hn. 

famous, although it contains nothing materially new beyond 
Routh's scheme. 
half-plane are called I1Hurwitz polynornials.li Accordingly, 
equations f(z) = 0 in which f(z) stands for a Hurwitz polynomial 

This Hurwitz criterion is attractively elegant and became 

Polynomials whose zeros all lie in the left 

are called "Hurwitz equations. / 3 3 3  

As H. Bilharz [ 3 ]  first showed, the connection between the 
Routhian sample functions and the Hurwitz determinants is very 
simple. 
then 

If R is the Routhian sample function of the vth row, 

I t , =  - I 1  L - ! I ,  - I ,  I!.  , - ( I" I (1 ' -  0, I , .  . . , ) I ) .  
11, 1 (7)  
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The complete formation of the Routhian scheme is thus linked to 
the prerequisite H -1 # 0 .  

satisfied. 
represented as quotients of minors of the highest Hurwitz 
determinant [ 61. 

With Hurwitz polynomials this is 
In fact all elements of the Routhian scheme can be 

According to J. Schur [36], the following proposition 

The polynomial ( 4 )  is a Hurwitz polynomial of degree n if 
applies: 

and only if a1 > 0 and the equation of degree n - 1 

for any 
tion. 

with a negative r e a l  part represents a Hurwitz equa- 

If one proceeds from the polynomial 

and specializes in ( 8 )  the parameter as 
then assuming real coefficients, the above proposition can be 
stated as follows: 

For a. > 0, B ( z )  is a Hurwitz polynomial of the degree 
I n-p 

(n - p )  if and only if a 
degree n - ( p  + 1) 

> 0 and the polynomial of the 
1, n-p 
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with 

represents a Hurwitz polynomial. 

If the coefficients of the Hurwitz polynomial f(z) = fo(z) 
and of the' reduced polynomials f, (z) resulting from algorithm (9) 
( p  = 1, 2, ..., n) are written in rows under each other, one 
arrives at the Routhian scheme from this IISchur scheme" simply by 
striking out every second term in each row, i.e., by striking out 
from each row a ( V  = 0, 1, . . . I  n - p )  the elements a 
with an uneven index V .  

y I n-r V ,n-p 
Conversely, one gets the pth row of the 

Schur scheme by combining the pth and the ( p  + 1) th row of the 
Routhian scheme. 
an even index v l  and the ( p  + l)th row yields those with an 
uneven index Y .  

Here the pth row yields the terms a y 1n-p with 

Thus the Routhian scheme stands in a simple relation to the 

If we multiply the pth row of the Routhian scheme by Hp ( p  = 

2, ..., n), according to [6] the following representation applies 
to this row: 

Hurwitz polynomials reduced after J. Schur. /334 

Here 

* I , .  l#I,. , . _. * I (  
f l , l , *  1,. . . . . I , ,  

means that minor of the kth degree of the highest Hurwitz 
determinant Hn which contains the rows mlr 
columns nlr "2, . . . I  

m2, ..., mk and the 
"k* 

This notation now allows us also to present directly the pth 
reduced Hurwitz polynomial f p ( z )  of the degree (n - p ) :  
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I (p = 1 , 3 , .  . . , I t ) .  

Here n 2 2, and a sum with a negative upper summation limit 
must be omitted. 
integer m with m 5 a. 

The symbol [a], as usual, means the largest 

If s zeros 21, z2, ..., z4, whose position is characterized 
by the fact that they either vanish or can be combined in 
mutually exclusive pairs whose elements differ only in their 
sign, are designated as s zeros lying symmetric to the origin, 
then from the representation (10) we easily get the following 
proposition: 

"The polynomial (5) with real coefficients has s (1 5 s 
- -c n - 1) zeros zl, z2, ..., zs lying symmetric to the origin, as 
well as r = n - s zeros with a negative real part, if and only if 
the Hurwitz determinants HB ( p  = 1, 2, ..., r) are positive and 
the determinants 

all vanish. The s symmetric zeros Zi solve the equation 

( I 2 a )  I 1 =- u 

for s 1. n - 2, or 

( I l ' b )  

f o r  s = n - 1 . 1 1  
f 335 
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This proposition includes the frequency formula of L. Cremer 
[7] as a special case, and can also be used to construct root and 
phase angle loci of control systems [13]. 

To prove the theorem, we write the polynomial F(z) = Fo(z) 
in the form 
zeros lying 
polynomial. 

Fo(z) = @ o ( Z )  * o ( z ) ,  where @ o ( z )  possesses only the s 
symmetric to the origin, and Q o ( z )  is a Hurwitz 
If one applies algorithm (13): 

"*,- 0 2 l b ' , , ( Z )  ( I)" ' l b ' , 1 ( -  211 I 
FJZ) ? < I l . "  ,I 

I obtained from (9) by 

to both Q o ( z )  and Fo(z), then between the reduced polynomials 
Fi(Z) and Qi(z) there exists the relationship Fi(Z) = < P o ( z )  @i(Z) 
(i = 1, 2, . . , r) . It follows that the (r + 1) first Routhian 
sample functions for Fo(z) are positive and thus so are the 
Hurwitz determinants Hp (a = 1, 2, ..., r). The representation 
for Fr(Z) to be obtained from (10) shows the vanishing of the 
determinants (11) and the validity of (12a) or (12b), since Fr(Z) 
only contains the s symmetric zeros. If, conversely, the 
determinants (11) vanish for F(z) , then the equation (12a) or 
(12b), which we now write in the form Fr(Z) = 0, describes the 
rth (r = n - s) reduced equation of F(z) , which obviously has 
exactly s symmetric roots. 
(13) 

(1.1) 

If we apply the converse of algorithm 

F,l I ( 2 )  F P k )  I z , l l  " . ~ ,  0 ,  I I 2 1  Y, (2) I (-. I )"  (1 b','( - z)l 

with Mp (z) being a polynomial of the (r - p )  th degree and 0,n-p' a 

Mr(Z) - 1, then Fp-l(z) = Fr(Z) Mp,l(Z) (/I = r, r - 1, ..., 1) 
Here 
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is the Hurwitz polynomial of the (r - p + l)th degree, which is 
obtained from Mp(z) by applying algorithm (14) after selecting 

= . It follows from this 1 I r- (p-1) r-p > 0 with b bo, r- (p-1) 
that the Routhian sample functions for Fj (z) (j = r - 1, r - 2, 
..., 0) are all positive. The same then also applies for the 
corresponding Hurwitz determinants Hp ( p  = r, r - 1, ..., 1). 

The theorem proved above contradicts a result of R. Th. 
Vahlen [ 3 8 ] ,  which can easily be demonstrated as an oversight. 
If we use the terms of the present paper, he erroneously con- 
cludes that a polynomial reduced according to (13) has only 
purely imaginary zeros when the coefficients of the even or 
uneven powers vanish. Moreover, he overlooks that the expansion 
into continued fractions introduced there includes a third 
possibility beyond his defined regular and irregular cases. This 
extra case arises if in a step of his expansion into continued 
fractions, the degree of the resulting function decreases by more 
than 1, but the function does not vanish identically. Hence /336 
the work of Vahlen supplies the claimed root enumeration in a 
strip parallel to the imaginary axis only if the aforementioned 
third case does not occur in the expansion into continued 
fractions. 

The following proposition answers the question of the ranges 
of variability of the coefficients of real Hurwitz polynomials. 
It reads: 

"The polynomial (5) with real coefficients and the normal- 
ization a0 > 0 is a Hurwitz polynomial if and only if the 
following representation applies for the coefficients: 

with 

12 
(Ly 1' - (-  1)k (k = 2 , 3 , .  . ., n); m"= 9 



and 

R.> 0 ( V  = 0, 1, . . ., 7 1 ) .  

"The parameters R, prove to be the Routhian sample functions 
of the polynomial F(z) .)I 

As proof, consider that the application of algorithm (14) -- 
= R p - l  > 0 -- to the Hurwitz poly- after selecting a 

nomial FB(z) of the (n - p)th degree with the Routhian sample 
function a 

0, n- (0-1) 

= Rs yields a Hurwitz polynomial F p - l ( z )  of the 
0 I n-/3 

degree n - p + 1. Furthermore, a - a  0,n-p' BY applying 1, n- ( B - 1 )  
(14) (n - 2 )  times with any a = Rp-1 > 0 (/3 = n - 2, Otn- (S -1 )  
n - 1, ..., 1) to 

which is a Hurwitz polynomial with R, > 0 (U = n - 2, n - 1, n) , 
the coefficient representation (15) of the Hurwitz polynomial 
Fo(z) = F ( z )  follows after complete induction. Conversely, if a 
polynomial Fo(z) is given for which (15) and (16) apply, it 
follows from the converse (13) of (14) that Fo(z) is a Hurwitz 
polynomial. I 

Representation (15) can be interpreted as the solving of the 
nonlinear equation system R, = 4,(aol ..., an) ( v  = 0, 1, ..., n) 
for the coefficients, which is always uniquely possible under the 
assumption Rk > 0 (k = 1, 2, ..., n - 2). 

If instead of (16) all R, ( V  = 0, 1, ..., n) is other than 
zero and exactly r sign changes occur in the sequence Rot Rl, 
...I Rn, then the parametric representation (15) yields the 
coefficients of a polynomial F(z) having r zeros with a positive 
real part and n - r zeros with a negative real part. 

On the other hand, if instead of (16), Rn-l = 0 and R, # 0 
for Y = 0, 1, ..., n - 2, n, and if exactly r sign changes occur 
in the sequence Rot Rl, ..., Rn-2, Rn, then F ( z )  has a pair of 
zeros on the imaginary axis, and r zeros lie in the right /337 
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half-plane and n - r - 2 zeros lie in the left one. 
leads to a complete solution of the problem of giving a para- 
metric representation of the stability boundary hypersurface of a 
linear control system of any order [17 ,  111. 

This remark 

The parametric representation (15)  has the following note- 
worthy property: If in (15) one successively sets the parameters 
Rot Rlr * * * ' ,  R equal to zero, one gets a parametric repre- 
sentation of the coefficients of the Hurwitz polynomial F B ( z )  of 
the (n - @)th degree reduced after ( 1 3 )  

B - 1  

( B  = 1, 2 ,  . ., n). 
If F ( z )  is a Hurwitz polynomial and if 

1 

1 

..I (2) =- .j [ F ( z )  I (- I ) "  F(- t ) ]  

B ( 2 )  = -  2 I F ( t )  - -  (-  I)"&'(- t ) ] ,  

then from the expansion into continued fractions presented by W. 
Bader [ 13 

by a known continued fraction theorem [31], in addition to (10) 
one gets the further explicit representation for the reduced 
Hurwitz polynomials defined by ( 1 3 ) ,  with F o ( z )  = F ( z )  : 

H. Buckner [ 4 ]  gave another reduction algorithm for Hurwitz 
polynomials Fp (B) ( 2 )  of the degree (n - p )  , which can be repre- 
sented as follows: 

1 4  



k?”’(Z) = 

- I  0 ... 0 

I . I% .- ... u 
14 

... . 

... L d - ,  2 u 0 4 - P 
( / ! I=O, l ,  ..., 1 8 - 2 ) .  

The coefficients of the pth reduced polynomial F’P(~) ( 2 )  / 338  
in can be obtained by successively setting Rn, Rn-l, -.-, Rn-P+l 

representation (15) equal to zero. 

This yields the possibility of giving the quadratic Control 
surface of a linear control system as a function of the initial 
values and the Routhian sample functions without calculating 
determinants [14]. 

Both reduction methods for Hurwitz polynomials can be 
interpreted simply by using electrical networks [9 ,  10, 121. 

As early as 1854, in a letter to Borchardt, Ch. Hermite [23] 
posed and solved the problem of giving characteristic conditions 
for the case that the roots of an equation with complex coef- 
ficients all have positive imaginary parts. 

The algebraic criteria for a given root distribution inside 
and outside the unit circle, or in the left and right half- 
planes, or upper and lower half-planes, can be derived by his 
method and the results of Ch. Hermite [23], J. Schur [36], A. 

Cohn [5] can be summarized after M. Fujiwara [21] as follows: 

If (4) is the polynomial under consideration, in each case 
one forms the expression: 

15 



Here f*(z) means the polynomial zn?(z-l) or ?(-z) or -i?(z), 
where z(z) is the polynomial with conjugately complex coef- 
ficients relative to f (z) 
sidered whose roots are mirror images of the corresponding roots 
of the original equation f(z) = 0, with regard to the unit 
circle, the imaginary axis or the real axis, as the case may be. 
Now in the three cases we consider the forms: 

Thus equations f* (z) = 0 are con- 

I. 

111. 

The following proposition then applies: 

A characteristic of whether the roots of the equation f(z) = 

I. inside the unit circle 
11. in the left half-plane 
111. in the upper half-plane 

0 with any real or complex coefficients all lie 

is that the associated Hermitian form is positively definite. 
the associated form has the rank n and if A or Y respectively 
gives the number of positive or negative squares in the normal 

If 

representation of the form, then the equation has /339 
I. R roots inside and v roots outside the unit circle 
11. A roots in the left and v roots in the right half-plane 
111. A roots in the upper and Y roots in the lower half- 

plane. 

If the rank of the associated form is r < n and if 71 and v 

mean the same as above, then 

unit circle, 

right half-plane, 
16 

I. A + x roots lie inside and v + X roots lie outside the 

11. A + x roots lie in the left and v + X roots lie in the 



111. A + x roots lie in the upper and Y + 1 roots lie in the 
lower half-plane, 
where 

If the presented equation has no pair of roots a,jI  with the 
properties 

I .  a $  I 

1 1 1 .  a f i  ( 1 ,  

1 1 . a  I f i  (l,uu+(I 

then x = 0 and n - r gives the number of roots 
I. on the unit circle 
11. on the imaginary axis 
111. on the real axis. 

This statement can also be formulated thus: If f(z) and 

f*(z) have a shared zero, then x = 0 and n - r gives the number 
of roots on the unit circle, imaginary axis or real axis. 

Compared to those of Routh and Hurwitz, the conditions 
formed by Hermite's method have the drawback of not being stated 
explicitly and in compact form, like the Hurwitz determinants in 
particular. 
criterion, despite his knowledge of Hermite's work. 

This too may have moved Hurwitz to derive a new 

Below, developing an idea of W. Schmeidler [35], we expli- 
citly present a general method for forming Hermitian conditions. 
It is sufficient to explain the formation method for Case 11. 

First one forms 

Here, 

(18) 17 



and thus in particular 

(188) a,t= - a*,. 

It furthermore follows from (17) that: 

/ 340  

The end term in both cases is 

The series must therefore be continued as begun until one of the 
indices becomes zero or n. 

Formulas (19) can be interpreted simply. One must form the 
sum of all elements appearing in the matrix of aik, which we call 

. a  , in the diagonal leading down to the left from or 
Thus the zeroth row and the nth column of .(I do not ak+l,io 

need- to be calculated. 

The matrix of Aik, which we call '3 , is symmetric. It is 
sufficient to calculate Aik with i 2 k, which forms the trian- 
gular matrix 91 I ,  or Aik with i 5 k, which forms the triangular 
matrix 91 'I. One gets the fewest terms in (19a) in the former 
case and in (19b) in the latter case. If, on the other hand, one 
uses (19b) e.g. in the first case, one gets terms still symmetric 
to the principal diagonal, which rise away because of antisym- 
metry. The second case works analogously. 

We limit ourselves to forming 91 from (19a). For this it 

0 ' '  with the corner terms alO, anO and an,n-l. 
is sufficient to include from matrix a i  the elements of the 
triangular matrix 

In enumerating the terms ast appearing for Aik it is 
sufficient to limit oneself to Aik with i 2 k. 
18 

However, it 



follows from (19a) that the term Aik and the term An-l-k,n-l-i 
appearing symmetrically to the secondary diagonal of 91' will 
yield the same number of terms. 
(20b) , Aik yields (k + 1) terms. According to (20a) , 

also yields (k t 1) terms. An-l-k, n-l-i 
either the (k + 1) th column or the (n - k) th row of 
gets (k + 1) terms. 
the (n - k)th column of SI 

likewise gets (k + 1) terms. This generalizes the fact, noted 
and proved in detail for equations up to the sixth degree by W. 
Schmeidler 1351, that the element Aik in the I1rth outer frame" of 
the matrix 91 consists of r summands (r = 1, 2, ...). 

With i + k + 1 5 n, according to 

If an element Ast is in 
91' I , one 

If an element Ast is in the (k + l)th row or 
then because of symmetry one 

With Schmeidler, we say that an element lies in the uth 
outer frame of a matrix a , if it lies in the uth or 
n - (U - l)th row or column and in the rth column or row (r = u t  

u + 1, ..., n - (U - l), with the row and column count beginning 
with 1. 1341 

For the element Aik (i 2 k) in the rth outer frame of matrix 
31 , according to (19) and (18) the following applies: 

Thus the Hermitian conditions can easily be formed for 
complex coefficients. We will now explain these conditions for 
the case of real coefficients. 

For real coefficients and i 2 k, it follows from (21) that: 

19 



Because of (22a), the determinants C, = IAik(-l)gli,k=O u-1 
can be decomposed into the product of two determinants as 
follows: 

For brevity's sake we write the decomposition equations 
(23a) and (24a) in the form: 

According to (23b) and (24b) the inequalities: 

(26) 

are equivalent to the conditions C, > 0; Y = 1, 2, ..., n. 
The following connection exists between the Hermitian and 

Hurwitz determinants : 

Furthermore, /342 

Thus it is shown that aside from inessential factors, the 
20 



Hermitian conditions convert into the Hurwitz determinants when 
real coefficients are assumed. 

Thus from (25) and (26) one gets a compact formation method 
for Hermitian stability criteria with the formation theorem that 
follows from (21): 

Because of the symmetry of the determinants CO, and Cl,, the 
restriction of (27) to i 2 k suffices. 

L. Cremer [8] studied the question of reducing the numbers 
of stability criteria assuming positive coefficients in the 
characteristic equation. Among other things, he reaches the 
result that with a, > 0 (U = 0, 1, 2, ..., n), the Hurwitz 
determinants of the secondary sequence: 

are always positive, if this is so for the main sequence: 
l lm- l ,  i lm-3,  11,,-6* . , . , I l l  [li,1 

and vice versa. A.T. Fuller [22] recently refined this result by 
showing that only certain coefficients need to be given as 
positive. 

Then L. Cremer notes What the way to the (n - 1)-series 
Hurwitz determinant, the most laborious to calculate, quite 
automatically leads past all Hurwitz determinants with lower 
numbers of places, whether one tries to work them out directly or 
takes the more practical route by way of Routhls algorithm.Il 

The above discussion shows that it is now possible to 
calculate the Hurwitz determinants of both sequences indepen- 
dently of one another, and that the result of L. Cremer is of 
practical significance. 
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If the coefficients of the characteristic equation are 
positive, only the Hurwitz determinants of the main sequence need 
to be calculated, i.e. 

G ~ , ; v =  1 , 1 ,  . . . ,  2 for  even n and I 

c,,; Y =  1 , 4 , .  . . , R- I 
2 

. for uneven n. 

A simple diagonal scheme for calculating these determinants 
was reported elsewhere [12, 15, 161. 1343 

In the stability testing of an equation with a positive 
coefficient, now instead of one determinant each of the degree 1 
to (n - l), only one determinant each of the degree 1 to 
needs to be calculated. 
elements of these determinants are coefficient functions; but 
they are easily formed and calculated. 

- 1  

This yields the drawback that the 

6 4  

At the start of his paper, A. Hurwitz [24] presents a 
criterion for whether all roots of an algebraic equation with 
real coefficients lie in the left half-plane. In different ways, 
independently of Hurwitzls work, H. Bilharz [3] and E. Frank [18, 
191 extended Hurwitz's theorem in that their results allow an 
enumeration of the roots lying in the left and right half-planes 
for equations with complex coefficients. 

Iterative methods to decide whether all roots of an equation 
with complex coefficients lie in the left half-plane were 
presented by S. Sherman, J. di Paola and H.F. Frissel [37]. 
These methods seem especially useful when one is using computers. 

K. Th. Vahlen [38] notes in his paper ''Root enumeration in 
stability questions1I that A. Hurwitz takes a considerable detour 
to arrive at his determinant criterion, and certainly finds a 
criterion for whether all roots lie in the left half-plane, Ifbut 
does not, as one must hope, arrive at an enumeration of the roots 
in this half-plane." J. Schur [36], who presented two criteria 
22 



that are also valid for complex coefficients, especially empha- 
sizes this advantage of his criteria over that of A. Hurwitz. 
The response to these two remarks is that the work of A. Hurwitz 
offers all the prerequisites for obtaining the desired root 
enumeration even for the case of complex coefficients. Complet- 
ing Hurwitz’s train of thought for complex coefficients yields 
the following result: 

Working from ( 5 )  with ,,, ,,; ! i t , : ‘  (1, o , ~ ,  . . ., 1 4 )  1 
and ,,ap( . i z )  t l ( z )  I i l ’ (z)  

ti,= 

with U(z) and V(z) being polynomials in z with real coefficients, 
we get 

a, a, . . . 
P” P I  B, . . . P a . - - ,  

0 P” P I  . . . P I . - ,  

0 a,, a,  . . . a s . - ,  

. . . . . . . 

. . . . . .  . 
f . . . . .  . 
0 .  . . O a , .  . .  a, 

If for Y = 1, 2, ..., n with ( 2 8 )  we form 1 3 4 4  

(29) 

and if none of these determinants vanishes, the following theorem 
applies: 

In the sequence 
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the number of positive terms indicates the number of roots with a 
negative real part, and the number of negative terms indicates 
the number of roots with a positive real part. 

The last part of the Hurwitz proof can be simplified and 
considerably shortened by the relationship 

- -  
(29 a) fi,= apH,-,fI,. ( v =  I ,  2 , .  . ., 71) (If, E 1) 

which applies for real coefficients. Section 7 of Hurwitzls 
paper becomes entirely dispensable. 

0 5  

H. Bilharz [ 3 ]  devoted a work to extending the Hurwitz 
criterion to complex coefficients. He works not from Hurwitz's 
paper, but from Schur's second criterion [36]. It reads: 

Let q be any fixed value with a negative real part. 
( 4 )  is a Hurwitz polynomial if and only if with a. # 0 the 
inequality 

Then 

applies and the equation of the (n - l)th degree 

with 

represents a Hurwitz equation. 

As a necessary and sufficient condition for a Hurwitz 
equation with complex coefficients one gets n inequalities. H. 
Bilharz [3] has now shown that these inequalities can be written 
as quotients of determinants, with the determinants easily being 
formed from the coefficients of the equation. 1345 

According to H. Bilharz [3], with a suitable choice of q one 

2 4  



gets the representation 

''C :, 0 ,  - I ,  2, . . ., ti (!I":: I ) ,  
(91) I ) - -  I 

for the inequalities, with D, meaning the principal minors of 
degree 2, of the following matrix: 

where ai = 0 if i > n or i < 0. 

1)  (;I) is the resultant of f (-iz) and -if(iz) . 
We now examine the connection between the Bilharz criterion 

and the Hurwitz criterion extended to complex coefficients. H. 
Bilharz has also shown that 

(33) I ) , = =  1'. d ,  

where d, is the principal minor of degree 2, of the matrix M: 

M = (aik) with ak = a' + ia; and k 

If in (29) one multiplies the rows r with r 5 2,3 (mod 4) 
and the columns s with s - 2,4 (mod 4) by -1, which does not 
change the value of (29), then one gets d, with the addition, as 
follows from (30), that a root enumeration is also proved. Thus 
the following relationship applies: 
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W. Schmeidler [35] called an investigation of the connection 
between the criteria of Bilharz and Hermite desirable. Now that 
the connection between the criterion of Bilharz and the extended 
criterion of Hurwitz has been shown, we can limit ourselves to 
explaining the connection between the extended criterion of 
Hurwitz and the Hermitian conditions. Hurwitz proceeds from 
polynomial ( 5 ) .  For comparison, it is also useful to state the 
Hermitian criterion for this notation of the polynomial. 1346 

After some computation one gets: With (5) and 

p + ( z )  - L'(-- I ) ~ Z , P "  
I " O  

one f o m s  , corresponding to (17) : 

thus F(z) = 0 is a Hurwitz equation if and only if the Hermitian 
form 

is positively definite. If the rank of the Hermitian form is n 
and of one designates the vth primary minor as B,, then: 

In the sequence 

the number of positive terms indicates the number of roots with a 
negative real part, and the number of negative terms indicates 
the number of roots with a positive real part. With (18), the 
following applies: 

or 

In both cases the final term reads: 
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. 

For Hermite, B, is of the order Y For Hurwitz , however, R, 
is of the order 2,. For 
determinants R*, of the vth order, and then show that 2"R*, = B,. 

we will first form equivalent 

If with inF(-iz) = U ( z )  + iV(z) one forms 

then for Rik the representation 

or 

applies, with the end term in both cases reading: 

We have : 

and with 
( 3 4 )  

we find that 

HI, . . . It,, 
. . . .  . 
. . . .  . 
. . . .  . 

K., . . . It,, 

1347 

For according to a notation of E. Netto [28], R*, = a,, so that 
the connection of R*, with B, remains to be examined. We find: 

and 

If in (34) we multiply the kth column (k = 1, 2, ..., V )  by ik-l 
and the jth row by il-j ( j  = 1, 2, . . . , V )  , R*, remains unchanged 
and Rjk Converts into 1/2 Bjk(-llk: 
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Thus: R*, = 2-VB,. The Hurwitz and Hermitian conditions for 
equations with complex coefficients therefore correspond except 
for positive factors. 

M. Fujiwara [21] has noted that the Hermitian conditions 
convert in the case of real coefficients into the conditions of 
Libnard-Chipart [26]. The equivalence of the criterion of 
Libnard-Chipart and that of Hurwitz for real coefficients has 
already been shown by M. Fujiwara [20]. His result therefore is 
included in the present one as a special case. 

§ 7  

Having shown the connection between the criteria of H. 
Bilharz and Ch. Hermite via the extended criterion of A. Hurwitz 
as an intermediate term, we now directly verify the connection 
between the two coefficient conditions. 

We proceed from Bilharz's condition. In the primary minor 
Dr (r = 1, 2, ..., n) from (32) we multiply the vth row by iv-l 
( V  = 1, 2, ..., 2r), the (2s - l)th column by i2-s and the 2sth 
column by il-s ( 8  = 1, 2, . . . , r) . 
the following applies: 

Here Dr converts to br and 

A 

(35) 11, ir(r ' '1 I ) ,  . 

br are the 2r-serial principal minors of the following 
matrix : 

Here ai = 0 if i > n or i < 0. fJ,, ( 1 )( E is the 
resultant of f ( z )  and ? ( - z ) .  

The determinants br (r = 1, 2, ..., n) can also be formed 
like the BBzout form of the resultant of f ( z )  and f ( - z )  : 

I1 I 
/ ( A ) / (  y) - I ( r ) l (  1 )  - A J '  - l ' L . l ' y k .  

r - Y  1. 1 ( 1  
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and from /349 

According to Hermite, the determinants 

must be considered. 
conditions of Bilharz and Hermite. 

This yields A, = Dr and the agreement of the 

Finally we return to Section 4. Using a proposition of W. 
Scheibner [34] and M. Noether [29] we can easily prove the 
following theorem: 

'IThe following conditions are necessary and sufficient in 
order for the equation F(z) = 0 to possess [exactly] v roots 
lying symmetric to the imaginary axis: 

2, = H,-l = * * * = i-t"-(,-l) = 0; I&,-" 4- 0, fi, LE 1 1 .  

Here roots are called symmetric to the imaginary axis if they 
either lie on the imaginary axis or can be combined in mutually 
exclusive pairs whose elements differ only in the sign of the 
real part." 

If we now limit ourselves to real coefficients and take 
relationship (29a) into account, it follows that: 

"It is necessary and sufficient in order for F ( z )  = 0 to 
have [exactly] Y roots symmetric to the origin if in each of the 
following rows 

1/83 11, I 

II. -, 11, - a  

I1 ...,.. ,I 11. (r I )  

11, - , . - I 1  

, . . . . . . .  . .  

at least one of the Hurwitz determinants vanishes [and Hn,, and 
Hn-(.+l) are not equal to zero (Ho = 1, H-1 = a0-I) 3 .'I 
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If we designate the roots of F(z) = 0 as zl, z2, ..., Zn 1 

from the last proposition with any numeration of the roots one 
can derive the following representations for the Hurwitz determi- 
nants : 

+r,s are functions of the roots, and $rt2i-l # 0 for z2k-1 = - ~ 2 k  
with t + i ( i =  1 , 2 ,  ..., . Furthermore, $r,r contains 
none of the sums Z2k-1 + Z2k for 
factor. 

k =  1,2, ..., [ a ]  as a 

For Hn-2mf the representation 

(360)  

/ 349  

also applies, where @2i-1 (i = 1, 2, . . . , m + 1) are functions of 
the roots that for all i # k do not contain the sum Z2k-1 + Z2k 
as a factor. 

These representations of the Hurwitz determinants, which 
provide a certain clarification of the structure of the Hurwitz 
determinants with regard to their construction from the roots of 
equations, comparable to the root representation of Orlando to 
[30] for Hn-1, together with the last theorem lead directly to 
the following result: 

"The following conditions are necessary and sufficient in 
order for [exactly] Y roots of the equation F ( z )  = 0 to be 
symmetric to the origin:" 

I I , ,  I / , , -  I . . .  / I , ,  , , , 0 ,  I / I , ,  ,.' I I , ,  ( #  I I I  I "I 

This result allows us to replace conditions (11) with 
Hurwitz determinants. 

Elsewhere [ 6 ] ,  the special case was reported in which the 2k 
uppermost Hurwitz determinants vanish if F ( z )  = Ok has purely 
imaginary root pairs. 
30 



. 
We also arrive at the following coupling rule for the 

vanishing of Hurwitz determinants of the main and secondary 
sequences : 

vanish, then the r uppermost Hurwitz determinants of the secon- 
dary sequence 

I I , , ,  II,, 2' I I , ,  4 0  . .. I I , ,  ( 2 ,  2) . 

also vanish. 
also assumes an # 0. 
only the vanishing of Hn-(2r-1) cannot be concluded.l# 

The converse applies without restrictions if one 
However, if the absolute term vanishes, 
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